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Abstract

The goal of this project is to implement an augmented re-
ality viewer that displays virtual objects overlaid on the im-
ages of a 3-Dimensional custom scene. The goal is achieved
in 10 different steps, all of which are mentioned in this re-
port. The main step of our approach is to recover the sparse
point cloud from the multi-view images, for which we use
the COLMAP open source implementation. Once the 3D
point cloud of a real 3D scene is recovered, we place a vir-
tual object on the dominant plane of the scene. The virtual
object is then projected back to the original images to dis-
play how the virtual object overlays on the original images
of a real 3D scene. The motivation of this work is to create
a framework similar to the real-time Augmented Reality ap-
plication available on iOS or ARCore on Android. (We use
Python as the developing language throughout the project.)

1. Real Scene Images

For the first step we record a video of a living room and
extract its frames as the input of the project. There are a
total of 332 frames, with dimension 1920x1080. Figure 1
shows some frames of the video. The dominant planar sur-
face is the ground plane (floor) along with also having the
scene of a sofa and a chair for better visualization.

Figure 1. Sample frames from input video

2. Generating 3D sparse point cloud

After collecting the multi-view images in step-1, our
next step is to generate a 3D point cloud corresponding to
the input frames. A theoretical explanation is given in Sec-
tion 13. This is a key step since the generated 3D point
cloud is necessary to proceed to the next steps. For this
we use COLMAP open source implementation [3]. For the
scope of this project we generate a sparse point cloud in-
stead of a dense point cloud (which requires GPU and more
computation time). The following steps are used to generate
the sparse point cloud:

e Install the COLMAP open source implementation [3]
and input the multi-view images.

e Go to File, then select New Project and create a
database.md file and select the images folder.

o After loading the images, proceed to the ”Processing”
option and select feature extraction by selecting SIM-
PLE_RADIAL as the camera model and click on the
checkbox : shared for all images, followed by feature
matching. See figures 2 for more details.

e Finally export the 3D sparse model as a set of text files
including cameras.txt, points3D.txt, and images.txt.

The output of this step can be seen in Figure 3, from
which we can notice the reconstructed scene (with the sofa
in orange color and the carpet floor too). See Appendix 13
for details on how COLMAP works.

3. Reading point cloud

In the third step we read the 3D point coordinates from
the points3D.txt file generated by COLMAP. These will be
the world coordinates for us. It contains the information of
all reconstructed 3D points in the dataset using one line per
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Figure 3. Figure displaying the incremental reconstruction of the input frames. The figure on left is after processing half of the frames, and

the figure on the right is after the completion of the reconstruction.

point. More details can be found on the official COLMAP
documentation [3].

4. Apply RANSAC [1]

In the fourth step we have to write a custom RANSAC
routine based on the lecture notes. Before writing it, there
are a few points which we intend to mention:

e Minimum number of 3D points needed to fit a 3D
plane is 3, since the degree of freedom of a 3D plane
is 3. Because of this, we randomly sample 3 points to
fit a plane at each iteration.

e We formulate a 3D plane as: a*x+b*y+c*z+d=
0, where x, y, and z are the 3D axis. Fitting the plane is
a problem of least square fitting of the four parameters
(a, b, c, d) with given 3 set of 3D coordinates (X, Y,
7).

e We define the distance of a point to the 3D plane as the
geometrical distance of the point to the plane:

laxz+bxy+c*z+d

dist =

If parameters (a, b, ¢) are normalized, then the distance
can be reduced to dist = |axx +b*xy + c*x z + d|.

e A distance threshold of 0.1 is manually set to deter-

mine if a point is an “inlier” to the plane. To choose
the proper threshold, we first experiment with a starter
threshold and observe the resulted plane, gradually
change the value until a plane with almost all inliers
included.

e At each iteration, we keep track of indices of inliers to

the plane and update the set of inliers with largest size.

e After manipulating the distance threshold, we find the

proportion of outliers is roughly one third of total num-
ber of points. Combined with the fact that the sampling
size s equals 3, we calculate the number of iterations
based on the following equation and decide N = 20 is
enough for yielding a good 3D plane.

__ log(1—p)
log(1—(1—¢€)*)

The complete implementation of RANSAC algorithm is

V2 + 02+ 2 shown in Figure 4.



def fit plane(data):
{rows, cols) = data.shape
G = np.ones{{rows, 2))
G[:, 8] = data[:, 8] &X
G[:., 1) = data[:, 1] &Y
Z = data[:, 2]
{a, b, ¢}, resid, rank, s = np.linalg.lstsq(G, Z, rcond=None)
x = np.arrayi{[a, b, =1, c])
norm = np.linalg.norm([a. b, -1])
X /= norm
return x

def is _inlier(model, point, threshold inlier}):
point withone = np.array([*point, 1])
dist = abs(np.sum{np.multiply(model, point withone))})
return dist = threshold inlier

def get inplane point idx({model, data, threshold inlier):
point_idx = []
for i, point inm enumerate(data):
if is_inlier({model, point, threshold inlier):
point idx.append(i)
point idx = np.array{point_idx)
return point_idx

def ransac(data, sample size, num_iters, threshold inlier, num_points):
“"" RANSAC algorithm to find a 3d plane
:param data: np array, Nx3
iparam sample size: number of points at fitting
cparam num iters: number of iterations
:param threshold inlier: thresheld of point-to-plane distance
:param num points: minimum number of points a plane should include
:return: best model, inm the form {(a, b, ¢, d} such that ax + by + cz + d = @
best count, number of points of the dominant plane
best _model = Hone
best_count = num_points
for i in range{num iters):
# randomly choose sample points from data
sample idx = np.random.permutation{np.arange{data.shape[d]))
sample = data[sample_ idx[:sample_size], :]
sample left = data[sample idx[sample size:], :]
# fit a plane
model = fit plane(sample)

# get number of points in plane

point_idx = get_inplane_point_idx({model, sample_left, threshold inlier)

count = point idx.shape[@]

print{'iter {}: model param {}. in plane point count {}'.format(i, model, count})

# check iIf count = num points
if count = num_points:
model = fit plane(np.vstack([sample, sample left[point idx, :]]))
if count > best_count:
best count count
best_model = model

return best model, best count

Figure 4. RANSAC implementation.
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Figure 5. Inplane points are indicated in red colour and 3D points from COLMAP are shown in gray color.

5. Display Inplane points

In step 5 we will display both the 3D point cloud gener-
ated by COLMAP software [3] and the set of inlier points
detected by RANSAC algorithm explained in step 4. If
we look at figure 1 closely, we can observe that the dom-
inant plane is the ground plane. RANSAC should ideally
find the dominant plane, and set of inlier points should
lie on the same plane. Figure 5 shows the inplane points
(red color) from different views, along with the total 3D
points (grey color). The number of total inplane points is
18950, whereas the number of outplane points is 11530.
Inplane having a high proportion of points indicates that
the RANSAC routine written by us is returning the correct
plane as dominant plane. It is corresponding to the ground
plane from our captured video. A better visual of the in-
plane points with dominant plane can be seen in Figure 7.

6. Local Coordinate System

In step 6, we have to form a local xyz coordinate sys-
tem where the dominant plane found in step 4 becomes z=0
plane. In order to form the local coordinate system, we have
to find the transformation between two 3D coordinate sys-
tems. This is fulfilled by realizing that we can instead find
the transformation between two unit vectors in the two 3D
coordinate systems such that one would match the other if
we transform the coordinate system. A good choice of unit
vector is the normal vector of the dominant plane, which
we have already found in the scene X,Y,Z coordinates. The
second unit vector will naturally be the normal of xy plane
of local coordinates where we wish to place the plane.

In order to place (x=0,y=0) in the middle of the set of in-
lier points (dominant plane), we calculate the center of these
points by averaging their coordinates. This center, which
can also be viewed as the vector from (X=0,Y=0,Z=0) to
the center of the dominant plane, will be the translation dis-
tance (negative here) of all the points in X,Y,Z coordinates

before they are applied with rotation. This distance will be
used again when we transform from local X,y,z coordinates
to scene X,Y,Z coordinates in step 7.

To calculate the transformation matrix from the normal
of dominant plane in X,Y,Z to the normal in x,y,z, we refer
to the method mentioned in the following link. It computes
the rotation matrix for two arbitrary vectors so that makes
it easy for us to transform between X,Y,Z and x,y,z back
and forth. Figure 7 displays the local xyz coordinate system
containing the dominant plane in blue colour. Note that it is
at z=0 which is xy plane. This is correct, since the dominant
plane had to lie on xy plane of local coordinate system. The
complete implementation of transformation (translation and
rotation) is shown in Figure 6.

7. Create Virtual Object

As part of step 7 we first create a virtual box in local
x,y,z coordinates. The coordinates of eight corners are set
such that the box lies in the local z=0 plane and the center of
the rectangular bottom surface is centered at (x=0,y=0,z=0).
The eight coordinates are (1,1,0), (-1,1,0), (-1,-1,0), (1,-
1,0), (1,1,1), (-1,1,1), (-1,-1,1), (1,-1,1). They form a box
with size 2x2x1 in x,y,z dimensions.

We then transform the eight corners from local co-
ordinate system x,y,z back to the scene X,Y,Z coordi-
nates. The rotation matrix is calculated using the func-
tion get_rotation_matrix by rotating normal of lo-
cal plane to normal of scene plane. After rotation, a transla-
tion is needed to place the box back to the dominant plane
in X,Y,Z coordinates. The distance has been computed in
step 6. Figure 8 shows the virtual object created in blue
color in local coordinate system and also in scene coordi-
nate system. It is clear that in local coordinate system, the
dominant plane lies at z=0 (xy plane), whereas in the scene
coordinates it not at the same location. This confirms that
the new coordinate system is not local coordinate system,
instead it is the oringinal scene coordinate system.


https://math.stackexchange.com/questions/180418/calculate-rotation-matrix-to-align-vector-a-to-vector-b-in-3d

def translate(data, dist):
return data + dist

def get vector normal (model):
o Compute the wector normal of plane: ax + by + cz + d = @
:param model: a, b, c, d
:return: normalized vector normal
normal = np.zeros(3)
normal[:] = model[:2]
norm = np.Llinalg.norm{normal)
normal /= norm
return normal

def get rotation matrix(a, b):
" Compute the rotation matrix from vector a to b
:param a: normalized, (3,)
:param b: normalized, (3,)
:return: R, such that Ra = b
find axis and angle using cross product and dot product
np.cross(a, b) # axis
np.linalg.norm{v) # sine of angle
np.doti(a, b) # cosine of angle
compute skew-symmetric cross-product matrix of v
v1l, v2, v3 = v
vx = np.array([[©, -v3, v2],
[w3, B, -v11,
['“2, vl! E}]]}
# compute rotation matrix
R = np.identity(3) + vx + np.doti{vx, vx) * (1 / (1 + c))
return R

#nown < i
I

def rotate point(point, R}:
return np.dot(R, point)

def rotate(data, R):
return np.apply along axis(rotate point, 1, data, R)

Figure 6. Euclidean transformation implementation.
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Figure 7. Local XYZ coordinate system with the dominant plane highlighted in blue, outlier points in gray, and inlier points in red.
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Figure 8. Blue box object in local (first row) and scene (second row) coordinate systems.

8. Read Intrinsic and Extrinsic Parameters

In step 8 we read the points from cameras.txt and im-
ages.txt file generated from the COLMAP after the recon-
struction. Cameras.txt file contains the intrinsic parameters
of all reconstructed cameras in the dataset using one line
per camera, whereas the images.txt file contains the pose
and keypoints of all reconstructed images in the dataset us-
ing two lines per image.

Specifically for our project, cameras.txt has only one set
of parameters for a simple radial camera model. It contains
the information WIDTH and HEIGHT which is the dimen-
sion of photos, and also the intrinsic parameters: f, cx, cy,
and k. Parameter f is the focal length; cx and cy is the posi-
tion of principle point which here is the center of film plane;
k is the parameter of distortion of the camera.

Images.txt contains for each image the extrinsic parame-
ters corresponding to camera poses. The information for ro-
tation comes in the form of quaternion (QW, QX, QY, QZ),
which will later be converted to rotation matrix (check func-

tion gvec2rotmat in projection.py, it is excerpted
from the source code of COLMAP). The information for
translation comes directly with three values TX,TY,TZ that
we can readily use in the next step.

9. Forward projection

In step 9, we follow lecture notes on camera model and
divide the forward projection into three stages: world to
camera, camera to film, film to pixels. The detailed cal-
culations are explained below. All the functions in this step
can be found in the file projection.py, including the
conversion from quaternion to rotation matrix.

World to camera conversion is the conversion from world
coordinates to camera coordinates, which can be expressed
as:

Pe = [R[t|Pw

where Py, should be homogeneous world coordinates
with dimension 4x1 and Pg is the corresponding point in
camera coordinates with dimension 3x1. Both R and ¢ are



Figure 9. Output frames showing a simple blue box in second row, and a complex blue table in third row. The first row displays corre-
sponding input frames.

retrieved from the information in images.txt.

Camera to film is the perspective projection from 3D
camera coordinates to 2D film coordinates, which can be
expressed as:

Py =K, Pc

where Pg is the camera coordinates resulted from last
procedure, Py is the film coordinates with dimension
2x1, and K, represents perspective projection matrix with
dimension 3x3. K is a diagonal matrix with its main diag-
onal values to be (f,f,1). One thing worth of notice is the
use of distortion parameter k read from cameras.txt.
We have checked the source code of COLMAP to find the
use of k and rewrite the forward projection code in python.

Film to pixels is simply the offset between film plane to
pixel coordinates, which can be expressed as:

P, = K> Py

where P, is the final 2D pixel coordinate, and K> is the
offset matrix that adds (cx, cy) to Py. Note that multiplying
K5 with K will get the matrix K, as in the lecture notes.

10. Project box to original images

In step 10, which is the last step we follow the proce-
dures in step 9, and project the corners of the 3D virtual
box into the image and draw it overlaid over the original
pixel values. To get a better visualization of the box in im-
ages, we also calculate the depths of each corners, with the
function calc_depthinprojection.py. We sort the
faces of the box by the min depth of 4 corners forming each

face, and draw the faces in reverse order, so that faces with
minimum depth are placed in front. The output results are
shown in Figure 9. We put a simple blue box as well as a
complex blue table overlaid on the original images. It can
be seen from Figure 9 that both the virtual objects are on
the ground plane, which confirms to the correctness of our
implementation since ground plane is the dominant plane in
our scene.

11. Work Distribution

Li Yu started the project by capturing the real scene
multi-view images and Shivansh Rao generated the point
clouds corresponding to the images. Both Li and Shivansh
started writing the RANSAC routines and code for local co-
ordinate systems and transformation between scene coordi-
nate system and local coordinate system. These codes were
written in a modular fashion so that it could be used as it is
in the future steps. Both their implementations were cross-
checked and at the end the better implementation was used.
Vikas Kumar helped in creating the virtual object (both box
and complex table) and used previous implementation to
transform local coordinates system back to scene coordinate
system. Vikas also read the intrinsic and extrinsic parame-
ters to convert initial world coordinates to pixel coordinates
for the forward projection step. Finally, Shrey Nigam found
the results of the frames overlaid with the virtual box and
contributed in the report writing part, power point presen-
tation, and preparing the contents in an organized manner.
At the end, Shivansh Rao recorded the audio for the video
to be submitted. Overall, all the members had roughly con-
tributed equally to the project.



12. Conclusion

After performing all the 10 steps as mentioned in this
report, we can conclude from the output shown in Figure 9
that the virtual object that we place is overlaid on the ground
plane of the images. This shows that our model is func-
tioning in a correct manner, since if we observe the video
we captured in step 1, the dominant plane is indeed the
ground plane. A few more things to note from this project is
that COLMAP [3] indeed provides a highly efficient open
source implementation for 3D scene reconstruction, how-
ever we only use it for sparse reconstruction and not dense
reconstruction.

13. Appendix

Structure-from-Motion (SfM) is the process of recon-
structing 3D structure from its projections into a series of
images. The input is a set of overlapping images of the
same object, taken from different viewpoints. The output is
a 3-D reconstruction of the object, and the reconstructed in-
trinsic and extrinsic camera parameters of all images. Typ-
ically, Structure-from-Motion systems divide this process
into three stages i.e. feature detection and extraction, fea-
ture matching & geometric verification and structure & mo-
tion reconstruction.

In the first step, feature detection/extraction finds sparse
feature points in the image and describes their appearance
using a numerical descriptor (SIFT [2] and its derivatives).
COLMAP [3] imports images and performs feature detec-
tion/extraction in one step in order to only load images from
disk once.

In the second step, feature matching and geometric ver-
ification finds correspondences between the feature points
in different images. We use exhaustive matching which
matches each image against every other image. The authors
introduce scene graph augmentation (geometric verification
strategy). The method uses homography inliners and inlin-
ers of essential matrix to distinguish between pure-rotation
(panoramic) and planar scenes. Only non-panoramic and
calibrated image pairs are used as seed for initialization pro-

cess (third step). The output of this stage is a so-called scene
graph with images as nodes and verified pairs of images as
edges.

After producing the scene graph in the previous two
steps, we can start the incremental reconstruction process.
COLMAP first loads all extracted data from the database
into memory and seeds the reconstruction from an initial
image pair. This stage includes incremental reconstruction
procedures such as image registration, triangulation (ob-
serving existing scene points), bundle adjustment (uncer-
tainties pertaining to camera pose). The authors use next
best view selection strategy to ensure that the rest of the re-
construction process is not affected by mis-registrations and
faulty triangulations. Hence, the candidate images chosen
for the next best view are the images with at least one trian-
gulated point. To ensure uniform distribution, the candidate
image is discretized into a grid with a fixed number of bins
in each dimension (each grid has either empty or full state).
The score (dependent on bin size) is accumulated over mul-
tiple bin sizes to find the next best view. Additionally,
the authors proposed a robust triangulation method to deal
with outlier contamination. Bundle Adjustment (BA) is per-
formed after each step on most-connected images instead at
a global level. Since BA can be a bottleneck, COLMAP
partitions the scene into several camera groups, instead of
clustering several cameras into one map.
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